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Single nucleotide polymorphisms (SNPs) are likely to contribute to the study of complex genetic diseases. The
genomic sequence of human chromosome 21q was recently completed with 225 annotated genes, thus
permitting efficient identification and precise mapping of potential cSNPs by bioinformatics approaches. Here
we present a human chromosome 21 (HC21) cSNP database and the first chromosome-specific cSNP map.
Potential cSNPs were generated using three approaches: (1) Alignment of the complete HC21 genomic sequence
to cognate ESTs and mRNAs. Candidate cSNPs were automatically extracted using a novel program for
context-dependent SNP identification that efficiently discriminates between true variation, poor quality
sequencing, and paralogous gene alignments. (2) Multiple alignment of all known HC21 genes to all other
human database entries. (3) Gene-targeted cSNP discovery. To date we have identified 377 cSNPs averaging ∼1
SNP per 1.5 kb of transcribed sequence, covering 65% of known genes in the chromosome. Validation of our
bioinformatics approach was demonstrated by a confirmation rate of 78% for the predicted cSNPs, and in total
32% of the cSNPs in our database have been confirmed. The database is publicly available at http://csnp.unige.ch or
http://csnp.isb-sib.ch. These SNPs provide a tool to study the contribution of HC21 loci to complex diseases
such as bipolar affective disorder and allele-specific contributions to Down syndrome phenotypes.

Single nucleotide polymorphisms (SNPs) (Kan and
Dozy 1978) are likely to become widely used markers
for the mapping of complex genetic traits. They are the
most common type of genetic variation and, with rap-
idly developing technologies for genotyping, they are
becoming highly suitable for automated, inexpensive,
and high-throughput genetic analysis (Landegren et al.
1998; Brookes 1999).

Common sequence variants in or near genes are
thought to be involved in the control of natural phe-
notypic variation, including the risk for common dis-
orders, susceptibility to infection, and drug response
(Lander 1996; Collins et al. 1997; Chakravarti 1999).
This hypothesis, sometimes referred to as common dis-
ease–common variant (CD–CV), has generated consid-
erable interest in SNPs over the last few years, resulting
in concerted efforts for the characterization of large
numbers of these sequence variants for genetic epide-
miology studies.

It is expected that with large numbers of SNPs and

cohorts of an appropriate sample size (Lander and
Schork 1994; Risch and Merikangas 1996), positive as-
sociations between a phenotype of interest and the
various interacting loci that influence it would be de-
tected. However, recent experimental and theoretical
studies (Harding et al. 1997; Clark et al. 1998; Lai et al.
1998; Kruglyak 1999; Moffatt et al. 2000) show that the
linkage disequilibrium (LD) on which indirect associa-
tion studies rely is not uniform throughout the ge-
nome, and might be limited in certain regions to in-
tervals as short as 3 kb. In this case, ∼500,000 markers
would be needed to cover the genome comprehen-
sively (Kruglyak 1999). An alternative is to pursue a
candidate gene approach in which genes of interest are
carefully screened for SNPs, and these can then be di-
rectly tested for association.

SNPs can be generated experimentally in a number
of ways (Underhill et al. 1997; Wang et al. 1998); al-
ternatively, one can use the large amount of sequence
data available in order to detect differences within clus-
ters of high quality overlapping sequences. This has
been proposed in a number of studies (Buetow et al.
1999; Garg et al. 1999; Marth et al. 1999; Picoult-
Newberg et al. 1999), all of which use base-calling pro-
grams and traces available in the databases to discrimi-
nate between sequencing errors, paralogous align-
ments, and true polymorphisms.

We set out to identify a dense collection of cSNPs
(single nucleotide polymorphisms on cDNAs) on hu-
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man chromosome 21 (HC21). As part of this effort we
developed a new algorithm for context-dependent SNP
detection that generates high quality cSNPs without
the use of trace data.

HC21 is the smallest human chromosome, and it
is related to numerous monogenic and complex disor-
ders (Antonarakis 1998). The entire nucleotide se-
quence of its long arm (33.6 Mb) has recently been
determined with 127 known and 98 predicted genes
(Hattori et al. 2000). We used this complete chromo-
some sequence as our template for EST alignment and
SNP discovery, and we present the resulting variants in
a web-based cSNP database and map (http://
csnp.unige.ch/http://csnp.isb-sib.ch). We anticipate
that this resource will be useful for the characterization
of the various complex traits that map to HC21 and for
the study of the complex phenotypes in Down syn-
drome.

RESULTS
Potential cSNPs were identified using two different
strategies, a genome-driven approach and a gene-
driven approach. For the genome-driven approach, the
complete HC21 genomic sequence was extracted from
public databases, filtered for repetitive and low com-
plexity sequences, and used for searching human ESTs
with a high level of homology. This approach obtained
25,701 ESTs, which were then clustered and aligned for
automatic SNP discovery using a newly developed al-
gorithm called snp_detect (see Methods). This pro-
gram generates an output file consisting of multiple

alignments of short genomic fragments containing the
candidate regions that fulfilled our SNP criteria (Fig. 1).

As an alternative method we performed a gene-
driven cSNP search. We performed a batch BLAST
search of 127 HC21 genes (comprising 379 kb of se-
quence), against all other human nucleotide databases,
using PowerBLAST. Output files were then visually in-
spected for potential cSNP detection.

A third source of cSNPs was a laboratory-based
gene-targeted approach, which was undertaken as part
of an effort to identify pathogenic mutations in candi-
date genes for disorders that mapped to HC21 (Lalioti
et al. 1997; Nagamine et al. 1997). We did not expect to
detect all polymorphisms within these genes, since only
a limited number of individuals were resequenced in
each case; however, common variations were identified.

Using these combined strategies, 377 potential
cSNPs were identified, as shown in Table 1. Of the 263
cSNPs that were automatically identified using the
snp_detect algorithm, 69% were contained in
known HC21 genes, and the rest represented SNPs in
anonymous ESTs (98% correspond to predicted genes
as reported by Hattori et al. 2000). All cSNPs were pre-
cisely positioned to genomic contigs and organized
into a clickable map, as shown in Figure 2.

cSNP Features
We analyzed the cSNPs in terms of the nucleotide sub-
stitutions observed and their effect at the amino acid
level. The results shown in Table 2 are similar to pre-
viously published data (Garg et al. 1999).

Figure 1 Example of snp_detect output. Precise mapping information of the alignment is given on the second line. C, R, and E
denote genomic, mRNA, and EST sequences, respectively. Each sequence is hyperlinked to GenBank and to CGAP when traces are
available. The first cSNP is contained in an anonymous EST, and the second in gene KIAA0539.
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The 38 cSNPs predicted to have an effect at the
protein level were further analyzed in terms of the na-
ture of the amino acid substitution observed, using the
PAM 250 comparison matrix. As expected, a high pro-
portion of these changes were conservative (73%), con-
firming a strong effect of selection, because we esti-
mated by simulation studies that random nucleotide
substitutions would produce 49% of conservative
changes.

Confirmations
To validate our data, we randomly chose 36 (10%) can-
didate variants for experimental confirmation and
PCR-amplified the selected SNP regions using a pool of
DNA from 10 individuals of unrelated CEPH families.
The amplimers were then sequenced to determine the
presence of polymorphisms at the expected positions
(Fig. 3).

In all cases single amplimers were obtained, and in
78% of the cases (28 of the 36) we could clearly observe
the presence of the predicted variation. In all cases we
sequenced the candidate variant region in single indi-
viduals to discard false positives caused by sequencing
background.

Of the eight candidate cSNPs that could not be
confirmed, one case resulted from bidirectional se-
quence failure and two others from sequencing of con-
sistently poor quality, preventing accurate base calling.
In two cases the predicted cSNPs were false positives
caused by alignment of known paralogous sequences,
whereas for the remaining three cases that could not be
confirmed, no explanation was evident. These, how-

Table 2. cSNP Features

Polymorphism type Number of SNPs Percent

Transversions 113 30
Transitions 264 70

CpG dinucleotides 111 42
Coding 82 22

silent 44 54
conservative 28 34
nonconservative 10 12

Noncoding 179 47
Unknown (EST cluster) 116 31
Total 377 100

Figure 2 Example of cSNP map covering 1.1 Mb of sequence. Blue boxes represent genes placed on either side of the central axis
according to the orientation of the transcript. Red lines indicate the presence of a candidate cSNP. Numbers represent megabases of
sequence from centromere to telomere (as presented in Hattori et al. 2000).

Table 1. cSNP Identification

Method Number of SNPs Confirmed

1. snp_detect 263 12/16 (75%)
2. PowerBLAST 117 (54 overlap with 1) 16/20 (80%)
3. Gene targeted 60 (9 overlap with 1

and 2)
60

Total (non
redundant) 377 88 (32%)
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ever, are likely to be caused by unknown paralogous
genes, or may even represent very rare polymorphisms.

Nucleotide Diversity
Sequence diversity can be expressed in a number of
different ways, all of which describe the extent of poly-
morphism within a given sample. The simplest way to
represent this is by dividing the number of polymor-
phic loci by the number of loci sampled (sometimes
referred to as S value), but this is highly dependent on
the number of chromosomes (n) assayed. Two esti-
mates of variability that correct for sample size are
commonly used, � (the expected number of polymor-
phic sites for a given sample size) and � (the average
heterozygosity per site) (Hartl and Clark 1997). Since
the majority of the cSNPs were generated using bioin-
formatics methods, it is practically impossible to pre-
cisely calculate � or � because the number of chromo-
somes sampled, n, is unknown. However, we can esti-
mate this parameter if we consider that 95% of our
alignments have an n that lies between 6 and 40, as
determined by the number of different cDNA libraries
from which the ESTs originated (assuming different
cDNA libraries are derived from unrelated individuals).
Variation within this interval has a relatively small im-
pact on the value of �, and hence we took the median
as a reference for calculation (see Methods).

We thus estimated the value of � to be
3.2 � 0.7 � 10�4, using for this calculation the total
cDNA length of known HC21 genes and the number of
cSNPs found within these regions. This � value (which
under the infinite sites model is the same as �) is lower
than those obtained using experiment-based ap-
proaches (� = 5.30 � 10�4 [Cargill et al. 1999] and
� = 8.0 � 10�4 [Halushka et al. 1999]) but similar to
other reports of bioinformatics-based SNP discovery
(� = 3 � 10�4 [Garg et al. 1999]).

To study the factors that might influence the SNP
detection efficiency of our method, we plotted the av-
erage proportion of polymorphic loci (S value) for each
gene against the number of different libraries present
in the alignments (Fig. 4). We obtained a correlation
coefficient of 0.47, which is significant and indicates
(as expected) that the number of independent ESTs in
the alignment accounts for some of the variation in
SNP discovery.

DISCUSSION
In this paper we present a dense, high quality cSNP
map of human chromosome 21 containing on average
1 SNP per 1.5 kb of transcribed region studied, and
covering 64% of all known genes in the chromosome.
As part of this study, we developed a new algorithm for
automatic cSNP detection, in which genomic se-
quences are used as a template for the construction of
EST alignments (Marth et al. 1999) that can be
screened for high quality mismatches. Unlike other ap-
proaches, the snp_detect algorithm does not rely on
trace data for quality discrimination. However, it in-
corporates a number of complex features for quality
control (see Methods) that take into consideration the
surrounding sequence as well as the quality of the
alignment, the advantage being that a greater number
of ESTs can be incorporated into the analysis, poten-
tially providing a higher sensitivity for cSNP detection.
In addition, EST traces are hyperlinked when available,
and hence can be easily viewed by the user as neces-
sary.

The high confirmation rate of cSNPs generated in
this manner indicates that the context-dependent
analysis (post-alignment treatment) performed by the
snp_detect algorithm, in combination with a final
step of visual correction (in which we eliminated a few
potential cSNPs in which the presence of noncognate

Figure 3 Example of cSNP confirmation in gene PWP2H. The polymorphic nucleotide is shown by an arrow.
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sequences was detected) was efficient at limiting the
number of false positives in the database.

We estimated the level of nucleotide diversity for
all known HC21 genes using standard population ge-
netics approaches (Hartl and Clark 1997) and obtained
a value of � = 3.2 � 0.7 � 10�4. This value is two- to
threefold lower than those of similar diversity studies
on different subsets of genes using more direct screen-
ing approaches such as solid phase resequencing and
DHPLC (Cargill et al. 1999; Halushka et al. 1999), but
similar to values obtained when using bioinformatics
approaches (Garg et al. 1999).

We hypothesize that this underestimation of � is
owing to three main factors: (1) Rare variants or vari-
ants present in genes with low levels of expression (for
which few ESTs are available) are likely to be missed.
(2) The distribution of ESTs is significantly skewed to-
ward the 3� end of genes, hence cSNPs located near the
5� end will be identified less efficiently. (3) The algo-
rithms were designed to be conservative so that only a
proportion of the observed variation was considered.

To test the first hypothesis we studied the relation-
ship between nucleotide diversity among genes and
EST coverage (only ESTs originating from different li-
braries were considered for this analysis). We observed
large differences in the detected nucleotide diversity
between genes (see Fig. 4) and found that an important
fraction of the variability was caused by their level of
expression (which directly relates to the numbers of
independent ESTs available). Therefore, in poorly ex-
pressed genes (or in genes with a rare expression pat-
tern) most of the nucleotide variation is likely to be

missed. However, EST depth accounts for only part of
the variance (because the correlation coefficient was
relatively low), and other factors are likely to be in-
volved. These include differences in selective con-
straints between genes, the nature of the sequence, the
presence of recombination hot spots, pseudogenes,
and Alu/LINE elements (Nachman et al. 1998; Conley
et al. 1999; Fahsold et al. 2000). In addition, we ob-
served that two-thirds of the cSNPs were located pri-
marily in the 3�-UTR regions, whereas with direct
screening approaches the distribution is generally uni-
form (Cargill et al. 1999). This indicates that, indeed,
some of the 5� variation in genes is being missed.

Several SNP databases are publicly available, and
these include experimental as well as bioinformatics
data. However, although they contain large numbers
of variants, in none of these is there a systematic scan
for cSNPs in genomic regions, which is the strategy
that we describe here. We analyzed the overlap be-
tween our dataset and other databases and found it to
be very small (Table 3). This was particularly evident
with the SNP Consortium (TSC) collection (see Table 3),
in which 2630 SNPs in human chromosome 21 have
been experimentally identified. This small overlap can be
explained by the fact that the TSC collection was gen-
erated randomly and does not target coding regions.

We estimate by BLAST analysis that ∼60/2630 of
the TSC chromosome 21 SNPs lie in transcribed re-
gions, and this reveals one limitation of bioinformatics
approaches, in that only ∼1/3 (24/60) of the variation
that is likely to be present is actually being identified in
our study (see Table 3). These numbers are consistent

Figure 4 The graph shows the distribution of the observed nucleotide diversity against the number of independent ESTs. The corre-
lation coefficient is 0.47. The S value corresponds to the number of cSNPs per nucleotide.
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with our estimates of � being two to three times lower
than the values obtained from experimental ap-
proaches.

Because most relevant variation related to disease
susceptibility is likely to be clustered in and around
genes and cSNPs are still poorly represented in the pub-
lic databases (as shown by the overlap data), a cost-
effective way (Roberts 2000) to generate cSNP maps
might be to use bioinformatics approaches such as the
one presented here. However, one must consider that
the effectiveness of indirect association studies has not
been proven empirically and direct candidate gene-
based association studies will probably require more
comprehensive cSNP discovery approaches. This is be-
ing currently pursued for genes that are suspected to be
involved in phenotypes of interest (Cambien et al.
1999; Cargill et al. 1999; Halushka et al. 1999; Ohnishi
et al. 2000; Yamada et al. 2000).

The database presented here is the first extensive
chromosome-specific cSNP collection, which is likely
to contribute to the dissection of complex phenotypes
that map to human chromosome 21.

METHODS
Sequence Handling, Clustering, and Alignments
From the EMBL database we extracted all sequences anno-
tated as human chromosome 21 that were at least 10 kb in
length using the getchrom script. These sequences were fil-
tered against Repbase and Repsim (a database of simple re-
peats) to mask repeats and low complexity sequences.

All human mRNA and EST sequences were extracted
from EMBL and used to perform high similarity matches
against the filtered HC21 sequence subset produced in the
first step using BLAST. As a result, we generated a table of ge-
nomic DNAs associated with their matching mRNAs and ESTs.

We then constructed clusters within the HC21 DNA se-
quences to group together overlapping and consecutive se-
quences. (During the final stage of the work we used the entire
chromosome sequence in five contigs as released in Hattori et
al. [2000].) For this we computed the best overall alignment
for each pair of sequences and then distributed the pairs into
clusters with the purpose of building contigs. Global align-
ments were performed using a specially designed script,
blalign, so that the relative positions of particular sequences
within the cluster (mapping) were deduced. We then parti-
tioned each cluster in overlapping segments of 2000 bp. These
segments were scanned, and all mRNA and EST sequences
that mapped to these regions were integrated to generate mul-
tiple alignments.

SNP Detection Method
Candidate SNP regions were detected with the aid of a novel
program called snp_detect (source code of the program is
available from ftp://www.isrec.isb-sib.ch/sib-isrec/snp_detect).
This algorithm scans a multiple alignment composed of ge-
nomic, mRNA, and EST sequences that are believed to origi-
nate from the same gene for the presence of sequence varia-
tions.

The sequence input has to be in FastaAlign format
with specifically formatted header lines that assign to each
sequence a corresponding sequence type (chromosomal,
RNA, or EST).

The algorithm proceeds in three phases that can be de-
fined as data preprocessing, SNP scanning, and postprocess-
ing. The first operation of the preprocessing phase, which we
term Gap treatment, classifies the gaps in the multiple align-
ment into short and long gaps, according to a length thresh-
old. Short gaps are believed to represent sequencing errors or
short indel polymorphisms (insertion/deletions), whereas
long gaps correspond to introns or real indels. Two different
gap characters are used in the internal representation to dis-
tinguish between these two cases in further processing steps.
Terminal gaps are always considered long gaps, regardless of
their actual length. The long gaps are automatically extended
by a few positions in order to make the procedure more tol-
erant to alignment errors.

The gap-treated multiple sequence alignments are subse-
quently translated from single-base to k-tuple (oligonucleo-
tide) representation. Different k-tuples are encoded by integer
numbers between 0 and (4k � 1) in a standard fashion. The
negative integer �1 is used as place holder for missing se-
quence information. There is a simple, although not imme-
diately obvious, rule guiding this process: If a character in the
single-base alignment is the last element of a contiguous
string consisting only of k unambiguous nucleotide symbols
(A, C, G, or T) plus a variable number of short-gap characters,
it is replaced by the corresponding k-tuple code; otherwise it
is translated into �1. Note that long-gap characters are
treated like ambiguous base characters and thus cause the
production of �1, whereas short-gap characters typically lead
to duplication of the same k-tuple at adjacent positions.

The k-tuple conversion functions as an input data quality
filter via at least three mechanisms: (1) by masking (replace-
ment by �1) bases in the vicinity of ambiguous base calls, (2)
by ignoring possibly mispositioned gap characters within oth-
erwise identical oligonucleotides, and (3) by requiring poten-
tial SNP alleles to occur several times in the same context (see
below).

During the SNP detection phase, each column of the k-
tuple alignment is subjected to the following SNP test: If at
least two different k-tuples are observed at frequencies equal
to or greater than both a count and a fraction threshold, then
the result of the SNP test is positive; otherwise, it is negative.

Table 3. Overlap with Other Databases

Database Web address SNP overlap

CGAP http://lpg.nci.nih.gov/ 25
Human SNP Database http://www.genome.wi.mit.edu/SNP/human/ 2
NCBI SNP Database http://www.ncbi.nlm.nih.gov/SNP/ 2
SNP Consortium http://snp.cshl.org/ 24
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The �1s indicating missing sequencing information do not
contribute to the column totals used for computation of allele
fractions. Note also that allele counts originating from the
more accurate chromosomal and RNA sequence classes may
be multiplied by a user-defined factor in order to increase
their weights. Using this mechanism one may accept a sequence
variation as real if it occurs either once in a single chromo-
somal or RNA sequence or at least twice in different ESTs.

The consecutive SNP tests applied to each column of the
multiple alignment lead to a binary SNP status sequence. The
SNPs in this sequence have to be mapped back to single bases
because each SNP in the original alignment automatically
generates k consecutive polymorphic positions in the k-tuple
alignment. This is achieved by applying the same type of SNP
test to the single-base alignment obtained after gap treatment.
Only SNP positions that are positive in both tests are retained.

In the last postprocessing step, the SNP status sequence is
scanned to identify clusters of SNPs separated by less than a
user-defined number of bases. Such clusters, which may rep-
resent true multiple SNPs or errors in the input alignment,
will be reported as single-candidate SNP regions in the output.
The program offers two alternative output formats. The first
one consists of the SNP status sequence in a FastAlign-like
format, in which SNP candidate positions are represented by
a user-defined character and all other positions by dashes. The
second format comprises rich SNP reports for all candidate
SNP regions detected including local multiple alignments as
shown in Figure 1. This format can be easily hyperlinked to
database sequence entries and chromatograms if correspond-
ing identifiers can be extracted from the FastAlign header
lines of the input files. The report format is intended for visual
inspection by the SNP database curator. The algorithm imple-
mented in snp_detect depends on a number of user-defined
parameters, which are listed in Table 4 along with their de-
fault values used in this work.

As a final step, the snp_detect output file was visually
corrected to remove some alignments in which the same ge-
nomic sequence was present several times with different ac-
cession numbers, resulting in selected SNPs that did not fulfill
our previously established criteria. We also eliminated some
regions of low quality alignments that remained after the
stringent matching parameters, in most cases a result of
paralogous genes.

PowerBLAST
We performed a batch BLAST search of all known HC21 genes
against all other human databases using PowerBLAST, a cli-
ent-server program at NCBI. For this purpose we generated a

FastAlign file containing 127 HC21 genes, which we used as
input. More details on the program and the parameters used
can be found at http://csnp.unige.ch/csnp_methods.html/.

Simulation of Amino Acid Substitutions
We estimated the proportion of conservative and nonconser-
vative amino acid changes that would be produced by ran-
dom nucleotide substitutions within 20 HC21 genes by simu-
lation studies. For this purpose we extracted the cDNA se-
quences of the selected genes and introduced random
mutations at a ratio of 2 : 1 transitions to transversions. We
then translated the sequences using the expasy translate tool
(http://www.expasy.ch/tools/dna.html) and generated amino
acid alignments to identify changes. Amino acid substitutions
were then classified as conservative or nonconservative using
the PAM 250 matrix. Positive or neutral scores were consid-
ered conservative and negative scores nonconservative. A to-
tal of 200 repetitions were performed.

Verification of Data
To verify that candidate cSNPs were actually polymorphic, we
designed primers around the putative cSNPs in order to gen-
erate short amplimers suitable for bidirectional sequencing.
We PCR-amplified each region containing the candidate vari-
ant using pooled DNAs, as well as two controls.

Pools were made using DNAs from 10 unrelated indi-
viduals from CEPH families. The quantity of each DNA was
measured by spectrophotometry and then normalized using
SYBR Green (Applied Biosystems) real-time PCR amplifica-
tion, to ensure that each DNA contributed equally to the pool.
Sequencing was performed using an ABI 377XL automated
sequencer (Applied Biosystems) and Big Dye terminator tech-
nology as recommended by the manufacturer.

Nucleotide Diversity Calculations
To calculate the nucleotide diversity parameter � we used the
formula � = K/(L∑i = 1

n � 1(1/i), where L is the length in base
pairs, n is the number of chromosomes, and K is the number
of variants found (Hartl and Clark 1997). For our calculations
L was 379,187 bp, which represents the total length of HC21
genes as reported by Hattori et al. (2000). Because only ∼60%
of the length of genes was actually covered by ESTs, however,
the value of � was corrected to take this fact into consideration.

By looking at the multiple sequence alignments and the
libraries of ESTs we estimated that for 95% of the genes n was
between 6 and 40. We then took the median (18) for our
calculations.

Table 4. Command-Line Parameters of snp_detect Program

Option
name

Data
type

Permitted
range

Default
value Description

-k integer >0 7 k-tuple length
-d integer >0 10 Upper length limit for short gaps.
-b integer �0 2 Number of base positions by which long gaps are automatically extended
-c integer >0 2 Count multiplier for chromosomal sequences
-u integer >0 2 Count multiplier for RNA sequences
-n integer >1 2 Minimal count of a k-tuple allele required by SNP test
-f real 0–0.5 0.1 Minimal fraction of a k-tuple allele required by SNP test
-s integer >1 10 Minimal number of nonpolymorphic positions required between SNPs to be

considered parts of different SNP regions
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A flat file version of the database is available via anony-
mous ftp at ftp://www.isrec.isb-sib.ch/sib-isrec/csnp/.
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